1°) Dérivées des fonctions usuelles

f(x) k	$\frac{f'(x)}{0}$
k	0
x	1
$x^n, n \in \mathbb{N}^*$	$n x^{n-1}$
$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{1}{x^n} , n \in \mathbb{N}^*$	$-\frac{n}{x^{n+1}}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\ln x$	
e^x	

2°) Opérations sur les dérivées

$$(\mathbf{u} + \mathbf{v})' = \mathbf{u}' + \mathbf{v}'$$

(ku)' = k u' où k est une constante

$$(uv)' = u'v + uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(v(u))' = \dots$$

$$(e^{u})' =$$

$$(\ln u)^{'} =$$

$$(u^n)^n = n u' u^{n-1}$$
 où $n \in \mathbb{N}^*$

3°) Dérivées et tangentes

définition: Soit f une fonction définie sur un intervalle I et dérivable en x_0 . Alors, la courbe représentative de f admet une tangente au point A d'abscisse x_0 qui est la droite passant par A et de coefficient directeur $f'(x_0)$.

Applications:

Soit f la fonction définie sur \mathbb{R} par $f(x)=x^2+3x-1$. Détermine une équation de la tangente à la courbe de f au point d'abscisse 1.

→ On considère une fonction f dont la courbe est représentée ci-contre. Détermine graphiquement :

$$f'(-1) =$$

$$f'(0) = ...$$

